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Computation of incompressible flows with immersed bodies
by a simple ghost cell method
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SUMMARY

The incompressible Navier–Stokes equations are solved by an implicit pressure correction method on
Cartesian meshes with local refinement. A simple and stable ghost cell method is developed to treat the
boundary condition for the immersed bodies in the flow field. Multigrid methods are developed for both
velocity and pressure correction to enhance the stability and convergence of the solution process. It is shown
that the spatial accuracy of the method is second order in L2 norm for both velocity and pressure. Various
steady and unsteady flows over a 2D circular cylinder and a 3D sphere are computed to validate the present
method. The capability of the present method to treat a moving body is also demonstrated. Copyright q
2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recently numerical methods for solving incompressible flows on fixed Cartesian meshes have
gained much popularity for their relative ease in treating complex immersed bodies [1–12]. In
these methods the body surface is not aligned with any grid line or surface, and various treatments
are developed to simulate the effects of the boundary condition required on the body surface.
The immersed boundary method [1] introduces a momentum-forcing term to the Navier–Stokes
equations using Dirac delta function. This momentum-forcing term represents the surface forces
exerted on the fluid by the immersed elastic or solid bodies. In its numerical implementation, the
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COMPUTATION OF INCOMPRESSIBLE FLOWS BY A GHOST CELL METHOD 1379

Dirac delta function is replaced by a smoother numerical delta function to distribute the momentum
forcing over several grid cells across the immersed boundary. In virtual boundary method [2, 3], the
momentum-forcing term is obtained using a feedback control loop to asymptotically enforce the
no-slip boundary condition at the immersed boundary surface. Both the immersed boundary method
and the virtual boundary method have been successfully implemented in various flow problems.
However, both methods suffer from numerical stiffness problem either due to the modification of
constitutive law to account for solid bodies or due to the necessary tuning of the control gain for
the feedback control logic.

The direct forcing immersed boundary method [4, 5] constructs the momentum-forcing term in
the framework of discretized equations such that the appropriate boundary condition is enforced
at the immersed boundary in the discretized system. This approach is practically equivalent to
performing a numerical reconstruction of the flow field near the immersed boundary such that the
no-slip boundary condition is implicitly satisfied at the immersed boundary. The variable value of
the cell receiving the direct forcing is determined by the chosen reconstruction scheme without
actually solving the flow equations. Thus, the differences in the choice of the reconstruction scheme
and the grid cells receiving the forcing distinguish various direct forcing methods. The forcing is
normally applied to grid cells or nodes external to the immersed body surface [4, 5]. It can also
be applied to grid cells or nodes inside the immersed body surface [6]. The latter approach is
sometimes called the ghost cell method, in which the variable value of the ghost cell inside the
body is obtained by an extrapolation from the flow solutions external to the body.

The fictitious domain method [7] is a finite element method that enforces the fluid–body interface
boundary condition in a weak form using Lagrange multipliers, which can be viewed as a term
similar to the momentum forcing added to the Navier–Stokes equations in the immersed boundary
method. In the Cartesian cut-cell method [8], the flow variables for the cut cells are solved based
on the actual shape of the merged cut cells. Thus, this method requires extensive work to account
for various shapes of the merged cut cells. Another way [12] to handle cut cells is to use one-sided
unequal-spaced finite difference operators for those irregular stencil nodes in the vicinity of the
body surface. In volume of body (VOB) method [9, 10], the domain inside the solid body is viewed
as being occupied by the same fluid as outside with a prescribed divergence-free velocity field. In
this view a fluid–body interface is similar to a fluid–fluid interface commonly encountered in the
volume of fluid (VOF) method for the two-fluid flow problems. Thus, a VOB function analogous to
the VOF function can be used to identify and track the presence of the immersed body. In a sense,
the VOB approach is equivalent to applying the direct forcing to all cells inside the immersed
body. Similarly, it is also feasible to view the solid body as being made of a material distinct from
the surrounding fluid and being tracked by a color function [11].

In this paper the concept of ghost cell is adopted to treat the immersed boundary on Cartesian
meshes. To enhance the accuracy around the immersed boundary, the local refinement capability
on Cartesian meshes is also developed in this work. As mentioned in Reference [6], both linear
and higher-order reconstruction schemes for ghost cells can yield overall second-order accurate
solutions. However, high-order reconstruction schemes require more stencil points and are more
likely to introduce spurious oscillations. Thus, at least for low and moderate Reynolds number
flows, a stable first-order reconstruction is preferred in this work as long as the flow solution can be
spatially second-order accurate. There are two common problems involved in a general first-order
reconstruction model. First, there is always an uncertainty of choosing the most appropriate set of
stencil points. In Reference [6], one boundary node and two fluid nodes nearest to the ghost node are
chosen to be the stencil for a linear reconstruction. This choice seems reasonable, but it may lead to
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the second problem that, when a chosen fluid node is too close to the immersed boundary, large and
negative weighting coefficient may result in the reconstruction matrix. In this case the extrapolated
value for the ghost node, though algebraically correct, may introduce numerical instability to the
flow solution. In Reference [6], when this troubled situation is identified, either the boundary line
segment is modified to include the troubled fluid node as a new boundary node or a different
linear extrapolation scheme based on the image point of the ghost node symmetric to the immersed
boundary is used. All these remedies require local modifications of the reconstruction stencil.

In this work, the concept of image point is adopted and modified to construct a simple and
stable linear reconstruction scheme. There is no ambiguity in choosing the stencil point, and the
extrapolation to the ghost cell will not introduce numerical instability. It will be shown that the
present scheme is second-order accurate in space. As validation examples, various steady and
unsteady flows over a 2D circular cylinder and a 3D sphere are computed and compared with the
published data. To demonstrate the capability of the present method to treat moving bodies, the 2D
flow over an impulsively started moving cylinder is computed and discussed.

2. IMPLICIT PRESSURE CORRECTION METHOD

The integral form of incompressible Navier–Stokes equations can be written as∮
CS

⇀
v · d⇀

S = 0

�
�t

∫
CV

⇀
v dV +

∮
CS

⇀
v

⇀
v · d⇀

S−
∮
CS

1

Re

⇀∇⇀
v · d⇀

S+
∮
CS

P d
⇀

S = 0

(1)

where ⇀
v and P are Cartesian velocity and pressure, Re is Reynolds number, CV is the control

volume under consideration, CS is the boundary surface of CV, dS̄ is a differential surface area
vector of CS pointing outward. All variables in Equation (1) are properly normalized by suit-
able reference values. Applying the divergence theorem, adapting the backward time differencing
scheme and keeping the pressure fixed at the current time level n the discretized momentum
equation for a finite volume cell is

(
c1

⇀
v∗−c2

⇀
vn+c3

⇀
vn−1

�t
+ ⇀

R∗
conv−

⇀

R∗
vis+

⇀

Rn
P + ⇀

Fdir

)
�V =0 (2)

where the variables ⇀
v and P are stored at the cell center; �t is the time increment; �V is the

cell volume; the superscript ‘*’ indicates an intermediate state between time level n and n+1;
⇀

Rconv,
⇀

RP and
⇀

Rvis correspond to the surface integral of convection flux, pressure flux and viscous

flux, respectively;
⇀

Fdir is a direct forcing term added to model the presence of immersed bodies.

Note that
⇀

Fdir is null for flows without immersed body. The constants are c1=1.5,c2=2 and
c3=0.5 for the second-order accurate backward differencing scheme, and c1=1,c2=1 and c3=0
for the first-order Euler implicit scheme. The intermediate velocity ⇀

v∗ generally does not satisfy
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the divergence-free condition. The velocity ⇀
v∗ and pressure Pn are corrected by the following

correction step:

⇀
vn+1 = ⇀

v∗−�t
⇀∇�n

Pn+1 = Pn+�n
(3)

where �n is the pressure correction. By requiring that ⇀
vn+1 be divergence-free, we obtain the

Poisson equation for the pressure correction:

∇2�n =
⇀∇ ·⇀

v∗

�t
(4)

Equations (2), (3) and (4) constitute the implicit fractional step pressure correction method used
in this work.

3. FINITE VOLUME DISCRETIZATION

AMUSCL-type finite volume method developed by Pan [9, 10] is used to discretize the momentum
equations on a cell-centered unstructured Cartesian grid system with local refinement. The flow
state at a cell vertex j is obtained by weighting the surrounding cell-center values as:

Qvert, j =
∑

i∈k( j) �i Qi∑
i∈k( j) �i

, �i = 1

|⇀r i, j |
(5)

where Qvert, j indicates the variable value of vertex j;k( j) is the set of cell centers surrounding
vertex j ; |⇀r i, j | is the distance from a cell center i to the vertex j . The variable gradient in a
particular cell is obtained by a simple average of the central differences of the vertex values. The
left and right states of a cell face f are linearly reconstructed from the neighboring center values
using the estimated cell gradient as

QL ,R
f =QL ,R

neig +�
⇀
r · ⇀∇QL ,R

neig (6)

where QL ,R
f indicates respectively, the left (L) and right (R) face values at the cell face f ; QL ,R

neig

indicates the left and right neighboring center of the cell face f ;
⇀∇QL ,R

neig indicates the cell gradient

of the left and right neighbor of the cell face f ; �
⇀
r is the distance from the neighboring cell

center to the center of the cell face f . The mean variable value QM
f at the cell face f is the simple

average of the left and the right value of the cell face f :

QM
f =0.5(QL

f +QR
f ) (7)

The convective flux
⇀

Rconv is computed as

⇀

Rconv= 1

�V

∑
CS

[
u

v

]
L/R

⇀
vM
f · n̂�S (8)
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where u and v are Cartesian velocity components; ⇀
vM
f is the mean velocity at the center of cell

face f ; �S is the cell-face area; n̂ is the outward unit surface normal; and the summation operator
is done over all surfaces of the cell. The subscript ‘L/R’ represents the velocity upwinding at the
cell face f as

(•)L/R =
⎧⎨
⎩

(•)L if ⇀
vM
f · n̂>0

(•)R if ⇀
vM
f · n̂�0

(9)

where the superscripts ‘L’ and ‘R’ indicate respectively, the left and right face values of cell face
f . The pressure flux is computed as

⇀

RP = 1

�V

∑
CS

PM
f �S

[
nx

ny

]
(10)

where nx and ny are the components of n̂ in x and y directions, respectively; PM
f is the mean

pressure at the center of cell face f . The viscous flux
⇀

Rvis is computed as

⇀

Rvis= 1

Re�V

∑
CS

⎡
⎣⇀∇u

⇀∇v

⎤
⎦ · n̂�S (11)

The velocity gradient at and normal to a cell face f is obtained by a central difference of the
two neighboring center values of the face f . On a regular Cartesian grid, Equations (5)–(11) are
spatially second-order accurate flux calculations.

To compute the divergence of velocity, a face-normal velocity U f is defined independently for
each cell face, which is different from the cell-center velocity. Specifically, for a cell face f with
unit normal n̂, the intermediate state of the face-normal velocity is defined as:

U∗
f =⇀

vM
f · n̂−cdisp

�t

��
(PR

f −PL
f )ê · n̂ (12)

where �� is the distance between the right and the left neighboring cell centers; ê is the Cartesian
unit vector normal to the face; cdisp is an input constant for the pressure dissipation. In this work,
cdisp� 0.3 is used. The divergence of the intermediate velocity for a particular cell is computed as

⇀∇ ·⇀
v∗ = 1

�V

∑
CS

(U∗
f �S)= 1

�V

∑
CS

⇀
vM
f · n̂�S− cdisp�t

�V

∑
CS

PR
f −PL

f

��
ê · n̂�S (13)

The last term on the right-hand side of Equation (13) constitutes a background dissipation term
based on the pressure field. It has similar effects as the widely used momentum interpolation
method suggested by Rhie and Chow [13]. On a regular Cartesian grid it can be shown that this
dissipation is proportional to (

a�x2
�4P
�x4

+b�y2
�4P
�y4

)

where a and b are some constants. Note that in Equation (12) the dissipation term is written in a
simple form suitable for unstructured meshes.
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Similar to Equation (3), the intermediate face-normal velocity is corrected by

Un+1
f =U∗

f −�t (
⇀∇�n) f · n̂ (14)

where the gradient of pressure correction is computed at the cell-face center using the neighboring
center values. By demanding that Un+1

f be divergence-free, a discrete Poisson equation for the
pressure correction is constructed as

1

�V

∑
CS

(
⇀∇�n) f · n̂�S− 1

�t�V

∑
CS

U∗
f �S=0 (15)

Equation (15) is a compact discretization of Equation (4). It is used to compute the pressure
correction �n at the cell centers, which in turn determines the cell-center pressure and velocity
at the new time level n+1 in Equation (3). When the velocity at the domain boundary is known
and fixed, the correction of velocity at the domain boundary should be zero. This is equivalent to
a Neumann boundary condition for Equation (15), requiring that the normal gradient of �n at the
domain boundary be zero.

4. A SIMPLE GHOST CELL METHOD

The immersed surface boundary is specified by a set of linear line segments whose nodes lie
on the body surface, as shown in Figure 1. It is assumed that the position and the velocity ⇀

vB
of the immersed body at any time are known from some appropriate governing equations or
boundary conditions. The body velocity ⇀

vB is assumed to be divergence-free, and the pressure
field inside the body obeys the same governing equation as the pressure field outside. Under this
assumption, Equation (4) can be applied to the entire computational domain including the body
interior.

In Figure 1, all cell centers external to the immersed body are categorized as fluid cells. All cell
centers inside the body are body cells. Those body cells neighboring to at least one fluid cell are
defined as ghost cells. It is clear that the immersed boundary passes through the space between the
ghost cells and their neighboring fluid cells. The variable values at ghost cells are to be determined
in such a way that the proper boundary condition is satisfied implicitly at the immersed boundary
surface. Once the ghost cell values are determined, they are specified to the particular ghost cell
center by the direct forcing method.

In this work, a simple and stable linear reconstruction model is developed to determine the
ghost cell values. For each ghost cell center, its projection point on the boundary surface, as shown
in Figure 1, is the point where the no-slip condition is to be enforced implicitly. The velocity at
the projection point ⇀

vproj is assumed known because it is on the body surface. Along the surface
normal direction passing through the ghost cell center and its projection point, we define the image
point of the ghost cell center to be the point at a distance � away from the body surface, as shown
in Figure 1. The choice of � is artificial, and in this work we take �=√

2�xmin in 2D problems
where �xmin is the minimum Cartesian cell length in the vicinity of the boundary surface. This
choice of �, which is the diagonal length of the Cartesian cell, ensures that the image point is
enclosed by four fluid cell centers forming a square region close to but untouched by the boundary
surface. The velocity at the image point can be obtained easily by a bilinear interpolation using
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Figure 1. Various cell and node types, including fluid cell, body cell, ghost cell, projection point
and image point, �: distance from projection point to image point.

the velocity of the four enclosing fluid centers. The velocity gradient along the surface normal
passing through the projection point can then be estimated by

�⇀
v

�n
=

⇀
v image−⇀

vproj

�
(16)

where ⇀
v image is the velocity at the image point, n̂ is the outward surface unit normal at the projection

point. The velocity at the ghost cell center is then extrapolated by

⇀
vghost=⇀

vproj− �⇀
v

�n
|⇀r ghost−⇀

r proj| (17)

where
⇀
r ghost and

⇀
r proj are the position vectors of the ghost cell center and the projection point,

respectively. The ghost cell velocity ⇀
vghost determined by Equations (16) and (17) implies that the

no-slip wall condition is satisfied at the projection point.
The linear reconstruction model described above is quite simple, and can be extended to 3D

problems in a straightforward manner. The choice of � in 3D is �=√
3�xmin, and the tri-linear

interpolation scheme can be used to obtain ⇀
v image from the surrounding fluid cell centers. The

simplicity of the model is attributed to the choice of a constant � for all image points. If we choose
a shorter �, the number of fluid centers enclosing the image point may be less than four in 2D
or less than eight in 3D, and the stencil for the reconstruction of ⇀

v image will vary. On the other
hand, if we choose a longer �, the estimated velocity gradient will not be a good representation
of the true velocity gradient in the vicinity of the boundary surface. Furthermore, the current
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choice of � ensures that �>|⇀r ghost−⇀
r proj| in Equations (16) and (17), and thus avoids the unstable

situation when some stencil point of the reconstruction model gets too close to the boundary
surface.

In the case of Neumann boundary condition with a given normal gradient �q/�n for variable q ,
for example, the variable value at the ghost cell center, qghost can be extrapolated by

qghost=qimage− �q
�n

|⇀r ghost−⇀
r image| (18)

where qimage and
⇀
r image are the variable value and the position vector of the image point, respec-

tively. Equation (18) and some alternative formulations for Neumann boundary condition will be
the subject of another paper.

Remember that in this work the variable values at cell vertices are used to compute the variable
gradients in each Cartesian cell. Thus, for consistency, the vertices of ghost cells that are covered
by the body surface, or ghost vertices, should also be treated by the same reconstruction described
above. That is, the variable values at ghost vertices are reconstructed using their corresponding
projection points and image points and Equations (16) and (17).

For body cells with known velocity ⇀
vn+1
B , the direct momentum forcing

⇀

Fdir in Equation (2) is

⇀

Fdir=−
(
c1

⇀
vn+1
B −c2

⇀
vn+c3

⇀
vn−1

�t
+ ⇀

R∗
conv−

⇀

R∗
vis+

⇀

Rn
P

)
(19)

resulting in the equation for body cells as

c1(
⇀
v∗−⇀

vn+1
B )

�t
�V =0 (20)

For ghost cells, ⇀
vn+1
B is replaced by ⇀

vghost in Equations (19) and (20). Note that Equation (20)

is used to replace Equation (2) in numerical implementation without actually computing
⇀

Fdir.
Because ⇀

vn+1
B is assumed known and divergence-free, the velocity correction step or Equation (3),

will not affect for body cell velocity. As for ghost cells, the direct forcing is applied at every time
step, thus the no-slip boundary condition on the immersed boundary is always satisfied implicitly
during the computation of fluxes.

To compute the aerodynamic forces acting on the immersed body, the surface integral of pressure
and viscous stress is needed:

⇀

f Body= ∑
surface

(
−P�

⇀

S+ 1

Re

⇀∇⇀
v ·�⇀

S

)
(21)

where the summation is performed on all boundary surface segments of the body. The pressure at
the segment center is obtained by a bilinear interpolation based on the vertex values of the cell
containing the segment center. The velocity gradient, on the other hand, is assumed constant in
each cell. The velocity gradient at a surface segment center is then estimated by differencing the
vertex values of the cell containing the segment center.
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5. IMPLICIT TIME INTEGRATION

Applying Newton’s method to Equation (2) and writing it in delta-law form, the implicit time
integration equation can be written as⎛

⎝c1�V

�t
+�V

�(
⇀

Rs
conv− ⇀

Rs
vis)

�⇀
v s

⎞
⎠(

⇀
v s+1−⇀

v s)

=−
(
c1

⇀
v s−c2

⇀
vn+c3

⇀
vn−1

�t
+ ⇀

Rs
conv−

⇀

Rs
vis+

⇀

Rn
P + ⇀

Fdir

)
�V

=−{RHS(
⇀
v s)−Source}=Ress (22)

where the superscript ‘s’ is the index for sub-iteration; Ress is the residual vector of the unsteady
Navier–Stokes equations; −RHS(

⇀
v s) contains all operators in the residual involving ⇀

v s ; Source
represents all other terms in the residual involving the known states of Pn , ⇀

vn , ⇀
vn−1 and ⇀

vn+1
B .

Equation (22) can be further represented by

[LHS](⇀
v s+1−⇀

v s)=−{RHS(
⇀
v s)−Source}=Ress (23)

where LHS is the Jacobian matrix of RHS(
⇀
v s). When the sub-iteration in s converges, the solution

of Equation (22) is ⇀
v∗ =⇀

v s+1, satisfying the time-accurate Equation (2). Note that the term Source
is constant during the sub-iteration process. In operator LHS, simplifications are obtained by using
first-order upwind scheme for the convection flux and the 3-point compact difference operator for
the viscous flux. With these simplifications, the stencil of LHS extends only to the neighboring
cell centers while the right-hand side operators are kept second-order accurate in space.

Splitting LHS into the sum of a diagonal part D, a lower triangular part L and an upper triangular
part U , a two-step approximate LU factorization method (ALU) is used to invert Equation (23) as

�U�⇀
v s−1+(D+�L)�⇀

v s∗ = �(2−�)Ress

�L�⇀
v s∗ +(D+�U )�⇀

v s = �(2−�)Ress (24)
⇀
v s+1 = ⇀

v s+�⇀
v s

where the superscript ‘s∗’ indicates the intermediate stage in sub-iteration s;� is a relaxation
parameter, and here we take 0.9���1. The initial conditions are ⇀

v s =⇀
vn and �⇀

v s−1=0 for
s=1. For further simplifications in D, L and U , the inviscid flux Jacobians are replaced by
their eigenvalue matrices such that the solution process of Equation (24) requires only scalar
multiplications and divisions.

6. LOCAL REFINEMENT AND MULTIGRID METHOD

To enhance accuracy and to reduce mesh size, a local refinement technique on Cartesian mesh
is developed to refine the grid spacing around the immersed boundary surface. An unstructured
Cartesian grid with local refinement is generated from an initial cell (parent cell) that covers the
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entire flow field. This initial cell is recursively subdivided into four identical child cells (eight child
cells in 3D) until sufficient spatial resolution around the body surface is reached. Between any
two neighboring cells, the difference in the level of refinement is restricted to one. The quadtree
(octree in 3D) structure among the parent cells and their child cells provides a natural sequence
of grid coarsening from fine to coarse grids.

To accelerate the convergence, a V-cycle multigrid method is also developed on the unstruc-
tured Cartesian meshes. For simplicity, we describe only a two-level multigrid cycle for solving
Equation (23) on the fine grid. The equation to be solved on the coarse grid is

−{RHSC(QC)−SourceC}=0

SourceC=[RHSC(JCF QF)+ ICF Res
F]

(25)

where Q is the unknown flow variable of the problem, which in this case is the velocity vector
⇀
v ; the super and the subscripts ‘F’ and ‘C’ represent the fine grid and the coarse grid variable or
operator, respectively. The injection operator JCF for variable Q is defined as

JCF QF=
∑

Child Q
F�V F∑

Child�V F (26)

where the summation is done over all child cells of a coarse cell. This injection operator conserves
Q�V in the process. The injection operator ICF for the residual vector Res is defined as

ICF Res
F= ∑

Child
ResF (27)

which conserves the surface integral of flux function. The operator RHSC in Equation (25) on
the coarse grid is theoretically equivalent to the operator RHS in Equation (23) on the fine grid.
However, simplification is achieved by using only first-order upwind difference for the convection
fluxes on coarse grids of all levels. Note that the constant term source in Equation (23) on the
fine grid is not present in the coarse grid equation. Equation (25) has exactly the same form as
the right-hand side of Equation (23). Applying again the Newton’s method to Equation (25), an
implicit integration equation similar to Equation (23) can be constructed on the coarse grid, and
then solved for QC by the same approximate factorization method as described by Equation (24).

When Equation (25) has been solved for QC, the prolongation operator JFC transfers the estimated
correction from the coarse grid back to the finer grid by

QF,s+1=QF+ JFC(QC− JCF QF) (28)

where JCF QF is the initial variable vector being injected from the fine grid. In this work a simple
prolongation that assumes a constant distribution in the coarse cell is used. Specifically, a coarse
cell transfers the calculated correction evenly to all its child (finer) cells. On the terminal grid, the
body cells including the ghost cells are excluded from the prolongation procedure.

For the solution of pressure Poisson equation of Equation (15) on locally refined Cartesian
meshes, a V-cycle multigrid method similar to the one described above is also developed. Applying
the Newton’s method to Equation (15), an implicit relaxation method can be written as

∇2(�s+1−�s)�V =−
{∑
CS

(
⇀∇�s) f · n̂�S− 1

�t

∑
CS

U∗
f �S

}
=Ress� (29)
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where the superscript ‘s’ is the index for sub-iteration. When the sub-iteration in s converges,
the solution is �n =�s+1, which satisfies the Poisson equation of Equation (15). The left-hand
side operator is a compact Laplacian operator whose stencil extends only to the neighboring cell
centers. Equation (29) can be further represented by

[LHS�](�s+1−�s)=−{RHS(�s)−Source�}=Ress� (30)

where the term Source� is related to the divergence of velocity in each cell. This equation is in
the same form as Equation (23). Hence, similar to the method described in the previous sections
from Equation (24)–(28), an approximate factorization method and a V-cycle multigrid method
are developed to solve Equation (30) on the whole computational domain, including body cells.
The initial conditions are �s =0 and ��s−1/2=0 for s=1.

7. NUMERICAL EXAMPLES

7.1. Lid-driven cavity with a centered cylinder

To verify the order of spatial accuracy of the current scheme, a lid-driven cavity flow with an
immersed cylinder at the center is computed. The upper wall of the cavity moves toward right at
a uniform speed of one. The Reynolds number based on the cavity length, upper wall speed and
the fluid viscosity is 1000. The cylinder diameter is 0.25. The boundary condition on the cylinder
wall is handled by the current ghost cell method. A sequence of regular Cartesian grids, with mesh
size ranging from 32×32 to 512×512, is used in the test.

Comparing with the no-slip boundary condition, the convergence of the computed ⇀
vproj at the

projection point on the body surface is tested first. Since the cylinder is stationary, the velocity ⇀
vproj

on the body surface should be zero. Here the velocity ⇀
vproj is obtained by a bilinear interpolation

using the ghost centers and the fluid centers enclosing the projection point. Table I shows the
average interpolated velocity components and the L2 norms of the error at all projection points.
It can be seen that the order of accuracy of the ⇀

vproj obtained by the current ghost cell method is
about 1.8.

Next, the converged flow solution on the 512×512 mesh is used as the reference solution in the
convergence test. The flow solutions at cell vertices inside a square of length 0.75 enclosing the
cylinder, as indicated by the dashed square in Figure 2, are compared with the reference solution.
In Figure 3, the L2 and L∞ norms of the error of the velocity field on various grids are plotted.

Table I. Lid-driven cavity flow at Re=1000 with a centered cylinder of diameter 0.25, data of interpolated
velocity at projection points on cylinder surface.

Grid size
No. of ghost cells
and ghost vertices Mean uproj Mean vproj ‖uproj‖2 ‖vproj‖2

32×32 20,28 −2.816E−03 −7.794E−04 4.673E−03 4.491E−03
64×64 44,60 −9.255E−04 −2.030E−04 1.513E−03 1.390E−03
128×128 88,124 −2.844E−04 −7.034E−05 4.494E−04 4.248E−04
256×256 180,268 −7.418E−05 −1.903E−05 1.200E−04 1.133E−04
512×512 360,564 −1.877E−05 −5.166E−06 2.922E−05 2.766E−05

Average order p of �x p 1.81 1.81 1.83 1.84
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Figure 2. Velocity vectors of lid-driven cavity flow, Re=1000, the flow solution inside the
dashed square is used for comparison.
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Figure 3. Norms of errors of velocity components compared with the results on the finest grid,
unfilled symbols: L2 norms, solid symbols: L∞ norms.

Two curves showing first-order and second-order convergence are also displayed for convenience.
It is obvious that the spatial accuracy of the current ghost cell method is second order in both
norms for both velocity components. Figure 4 shows the L2 and L∞ norms of the error of pressure
on various grids. The L2 norm of pressure error is clearly second-order convergent. However, the
maximum norm of pressure error is less than second order. This test has basically verified that the
current ghost cell method is second-order accurate in L2 and L∞ norm of velocity, and in the L2
norm of pressure for the problem considered here.

7.2. Flows over a 2D circular cylinder

The steady and unsteady flows over a circular cylinder of unit diameter at Re=20,40,100,200 and
300 are computed on a Cartesian grid shown in Figure 5. The outer boundaries are 30 diameters
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Figure 4. Norms of error of pressure compared with the results on the finest grid,
unfilled symbol: L2 norm, filled symbol: L∞ norm.
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Figure 5. Locally refined Cartesian mesh for flow over a 2D stationary cylinder.

away from the cylinder, either parallel or perpendicular to the free stream. The grid is locally
refined around the cylinder to have 384 ghost cells and 620 ghost vertices, while the total number
of terminal cells is only 31 504. This high grid resolution around the cylinder is not really necessary
for flows with a Reynolds number under 300. This grid is used here only to demonstrate the
capability of local refinement, because it is almost impossible to obtain such a high grid resolution
on a regular Cartesian grid of the same size over the same computational domain. The free-stream
condition is set to the inflow boundary and the two side boundaries. The downstream boundary
follows the upwind differenced equation of (�⇀

v/�t)+Un(�
⇀
v/�x)=0, where Un is the normal

outflow velocity at the boundary.
For the steady cases of Re=20 and 40, the Euler implicit method is used with a time step

�t=0.5. This amounts to a maximum CFL number around 20 in the steady state, and the maximum
CFL may exceed 80 in transient. For such high CFL numbers, the implicit multigrid method
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Figure 6. Convergence history for the computation of flow over a 2D stationary cylinder, Re=40.
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Figure 7. Streamlines showing separation bubble behind a 2D cylinder, Re=40.

developed in this work is considered essential for stability. For convenience, one multigrid V-cycle
going through the coarse grids is counted as equivalent to one ALU relaxation step on the finest
grid. In Figure 6 for the Re=40 case, the infinity norm of the steady-state residual for fluid cells
or the Ress in Equation (22) without the term involving �t dropped 4 orders of magnitude in
less than 500 steps. The computed streamlines for the Re=40 case are plotted in Figure 7. For
convenience, the cylinder surface is also displayed in the figure. A separation bubble behind the
cylinder is clear. The streamlines around the cylinder are smooth, indicating that the ghost cell
treatment has captured the immersed boundary on the refined Cartesian grid. Figure 8 shows the
computed pressure contours. Note that the pressure inside the cylinder adjusts itself automatically
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Figure 8. Pressure contours for the flow over a 2D stationary cylinder, Re=40.
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Figure 9. Pressure coefficient along the 2D cylinder surface, Re=40.

to the pressure field outside. The pressure contours intersect the cylinder wall in a nearly orthogonal
manner. The pressure coefficient on the immersed boundary segment center is interpolated using
the surrounding cell-vertex values and plotted in Figure 9. The data from Fornberg [14] are also
included for comparison. The two results generally agree with each other very well, but the current
computation predicted a slightly lower surface pressure distribution on the leeward surface. As for
the case with Re=20, the convergence behavior, the velocity and pressure distributions are similar
to the above results. Table II lists the computed lift coefficient (Cl), drag coefficient (Cd), the
separation bubble length (Lw) normalized by the diameter (d) for both cases and some published
data by others. The comparisons are generally good, including the comparison with data obtained
by the ghost cell method of Tseng and Ferziger [6].
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Table II. Simulation results for flows over a 2D stationary circular cylinder.

Methods Re Cd Lw/d Cl St

Present 20 2.032 0.915
Fornberg [14] 20 2.00 0.91
Ye et al. [8] 20 2.03 0.92
Present 40 1.517 2.258
Fornberg [14] 40 1.50 2.24
Ye et al. [8] 40 1.52 2.27
Tseng and Ferziger [6] 40 1.53 2.21
Present 100 1.332±0.010 ±0.325 0.164
Liu et al. [15] 100 1.350±0.012 ±0.339 0.165
Kim et al. [5] 100 1.33 ±0.32 0.165
Tseng and Ferziger [6] 100 1.42 ±0.4 0.164
Present 200 1.313±0.043 ±0.611 0.194
Liu et al. [15] 200 1.31±0.049 ±0.69 0.192
Kiris and Kwak [16] 200 1.27±0.04 ±0.67 0.184
Present 300 1.315±0.072 ±0.784 0.208
Marella et al. [12] 300 1.28 0.22
Ye et al. [8] 300 1.38 0.21

For the unsteady cases of Re=100,200 and 300, the second-order accurate backward difference
scheme is used for time integration with a time step �t=0.1. The time step is chosen such that the
expected vortex shedding cycle takes about 50 steps to complete The instantaneous streamlines
at certain instants in the periodic vortex shedding process for Re=200 are plotted in Figure 10.
The vorticity contours are shown in Figure 11. The unsteady vortex shedding behind the cylinder
is clearly seen. Table II also lists the computed lift coefficient (Cl), drag coefficient (Cd) and the
Strouhal number (St) of unsteady vortex shedding. The comparisons between the present work
and the work of others are generally good. Note that in the Re=100 case, the averaged Cd and
the amplitude of Cl obtained by Tseng and Ferziger [6] are both higher than the present results.
In Reference [6], only 72 ghost cells are used around the cylinder.

7.3. Flows over a 3D sphere

To validate 3D computations, steady and unsteady flows over a sphere are also computed on a
locally refined Cartesian mesh. The sphere has a diameter of unit length. The outer boundaries of
the mesh are 15 diameters away from the sphere center, either parallel or perpendicular to the free
stream in x direction. The free-stream condition is set to the upstream inflow boundary face and
the four side faces of the mesh. The downstream boundary face follows the upwind differenced
equation of (�⇀

v/�t)+Un(�
⇀
v/�x)=0, whereUn is the normal outflow velocity at the boundary. For

steady-state computations, the Euler implicit time integration is used. For unsteady computation,
the second-order accurate backward time integration is used.

The mesh is refined around the sphere surface such that the finest cell size is 7.32×10−3 while
the largest cell size is 0.9375. There are totally 1 176 624 terminal cells in the mesh with 48 216
ghost cells and 100 604 ghost vertices. Without adaptive local refinement, the number of cells in
a regular Cartesian mesh with a cell size of 7.32×10−3 would exceed 6.5×1010. This clearly
demonstrated the advantage of local refinement. On such a highly refined mesh, the implicit time
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Figure 10. Streamlines showing vortex shedding behind a 2D stationary cylinder, Re=200.
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Figure 11. Vorticity contours for the flow over a 2D stationary cylinder, Re=200, solid lines: positive
vorticity, dotted lines: negative vorticity.

integration method and the multigrid method developed in this work are essential to ensure stability
and convergence of the solution process.

It is known that the airflow over a sphere is steady and axi-symmetric about the free-stream
direction when Re is less than 210. Figure 12 shows for the Re=100 case the symmetric patterns
of the streamline on the plane of z=0 with a separation bubble in the wake region. Figure 13
shows the pressure coefficient distribution along the sphere wall from front stagnation (�=180◦)
to the rear stagnation (�=0◦) on the plane of z=0. The current result compares well with the data
of Fornberg [17]. Table III lists the computed drag coefficients (in x direction) and the separation
bubble length in the wake for different Reynolds numbers, along with some published data. The
comparisons are generally good.

When the Reynolds number is 250, the flow is still steady, but no longer axi-symmetric. Instead,
the flow becomes asymmetric in the y direction, while still remaining symmetric about the z=0
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Figure 12. Streamlines for the flow over a stationary 3D sphere on symmetry plane z=0, Re=100.
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Figure 13. Pressure coefficient on 3D sphere surface cut by z=0 plane, Re=100.

plane. Figure 14 shows the streamlines on the z=0 plane, which exhibit the asymmetric pattern
in y direction. In this case, the sphere experiences a drag force in x direction and a lift force in y
direction. When the Reynolds number is 300, the asymmetry in y direction is further developed
into unsteady vortex shedding, as shown by the drag and lift coefficients history experienced by
the sphere in Figure 15. In this figure, the lateral force coefficient in the z direction is in the order
of 5×10−5, while lift is about one-tenth of the drag. The computed drag and lift coefficients and
the Strouhal number of the vortex shedding are listed in Table III, which shows good comparisons
with the results from others.

7.4. Impulsively started 2D moving cylinder

To test the capability of the present method to handle moving bodies, the case of an impulsively
started moving cylinder was computed and compared with the experimental data by Bouard and
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Table III. Simulation results for flows over a 3D stationary sphere.

Methods Re Cd Lw/D Cl St

Present 100 1.063 0.852
Fornberg [17] 100 1.085 0.874
Johnson and Patel [18] 100 1.08 0.86
Kim et al. [5] 100 1.087
Marella et al. [12] 100 1.06 0.88
Present 150 0.867 1.17
Johnson and Patel [18] 150 0.90 1.20
Marella et al. [12] 150 0.85 1.19
Present 200 0.752 1.405
Fornberg [17] 200 0.768 1.436
Johnson and Patel [18] 200 0.771 1.439
Present 250 0.696 0.0611
Kim et al. [5] 250 0.701 0.059
Present 300 0.638±0.002 0.069±0.013 0.133
Johnson and Patel [18] 300 0.656 0.069 0.137
Kim et al. [5] 300 0.657 0.067 0.134
Marella et al. [12] 300 0.621 0.133

X
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Z

Streamlines On Symmetry Plane, Re=250

Figure 14. Streamlines for the flow over a stationary 3D sphere on symmetry plane z=0, Re=250.

Coutanceau [19]. The 2D cylinder was initially at rest and suddenly moved to the left at a constant
speed Ucyl. The Reynolds number based on the cylinder diameter D and cylinder speed Ucyl is
550. The mesh is uniformly refined along the path of the cylinder such that the cylinder surface
intersects about 312 cells. During the cylinder movement, some ghost cells near the rear end of
the cylinder at time level n will change to fluid cells at time level n+1. For these fresh fluid cells,
the body velocity ⇀

vn
B at time level n, not the ghost cell velocity ⇀

vn
ghost obtained by Equations (16)

and (17), is used as the starting condition for time integration.
The time integration is performed for 600 steps at a constant time increment. At the end of

computation, the cylinder has moved three diameters away from its initial position. Figure 16
shows the time-dependent development of velocity along the symmetry axis in the wake. In this
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Figure 15. Force coefficients for flow over a 3D stationary sphere, Re=300, square: drag coefficient,
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Figure 16. Flow over an impulsively started 2D cylinder, velocity u along symmetry axis in the wake,
UcylD/�=550,�t=0.001 symbols: experimental data of Bouard and Coutanceau [19] at different times

t∗ = tUcyl/D with an increment of 0.5, lines: computed.

figure the velocity u was measured relative to the moving cylinder and normalized by the cylinder
speed Ucyl. The distance x/D along the symmetry axis was referenced relative to the cylinder
center. The symbols in Figure 16 are measured manually from the experimental points in Bouard
and Coutanceau [19], while the lines are from our computation. Different symbols correspond
to different times t∗ = tUcyl/D with an increment of 0.5, starting from t∗ =0.5. The agreement
between computation and experiment is generally satisfactory. Figure 17 shows the computed
instantaneous streamlines at t∗ =3.0. The formation of a symmetric separation bubble in the wake
and a pair of isolated secondary vortex located between the shoulder and the rear end stagnation
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Figure 17. Flow over an impulsively started 2D cylinder, UcylD/�=550,�t=0.001, t∗ = tUcyl/D,
instantaneous streamlines at t∗ =3.0.
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Figure 18. Drag coefficient history, flow over an impulsively started 2D cylinder,
UcylD/�=550, t∗ = tUcyl/D,�t=0.001.

can be clearly seen. This is in excellent agreement with the experimental observation of Bouard
and Coutanceau [19].

The examination of velocity profiles behind the moving cylinder has basically verified that the
present ghost cell method can be used to compute flows over a body in forced motion. However,
when one examines the drag coefficient history in Figure 18, oscillations are observed. The sudden
start of the cylinder causes the huge oscillation in drag coefficient in the initial transient for about
25 time steps. However, because the cylinder is in a preset forced motion, the observed oscillation
in drag history is merely a flow response to the cylinder motion, and it does not interact with

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1378–1401
DOI: 10.1002/fld



COMPUTATION OF INCOMPRESSIBLE FLOWS BY A GHOST CELL METHOD 1399

0 250 500
(Time Steps)X2.44

0

0.1

0.2

0.3

0.4

0.5

C
d

Moving Cylinder, dt=dx/Ucyl

Figure 19. Drag coefficient history, flow over an impulsively started 2D cylinder,
UcylD/�=550, t∗ = tUcyl/D,�t=�xmin/Ucyl.
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Figure 20. Flow over an impulsively started 2D cylinder, velocity u along symmetry axis in the wake,
UcylD/�=550,�t=�xmin/Ucyl, symbols: experimental data of Bouard and Coutanceau [19] at different

times t∗ = tUcyl/D with an increment of 0.5, lines: computed.

the cylinder motion. After the initial transient, the drag coefficient then oscillates with smaller
amplitude around certain varying mean value. This small oscillation is due to the fact that as the
cylinder moves, ghost cells change their position relative to the cylinder surface at every time
step, and the grid distribution around the cylinder surface also changes at every time step. Further
examinations show that it is the pressure force in Equation (21) that exhibits the oscillatory behavior.
The viscous force calculation shows smooth varying history. To eliminate such oscillation, the
time step is reset to �t=�xmin/Ucyl such that the cylinder is moved exactly one cell length �xmin
at every time step. Under this new time step, the ghost cells remain fixed relative to the cylinder
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surface during the cylinder motion. Figure 19 shows the drag history computed using this new
time step. The initial oscillation is still observed, but the latter development of the drag coefficient
becomes smooth varying. The velocity profile development in Figure 20 is similar to the results
in Figure 16, even though the new time step is about 2.44 times of the original time step used in
Figure 16.

Although the new time step in the above test can be set to eliminate the oscillation caused by
the change of ghost cell position, this treatment is feasible only when the Cartesian grid around
the body is uniform and when the body motion is simple. For a general body movement on an
arbitrarily refined Cartesian grid, the ghost cell position relative to the body surface generally will
change during the body movement, and the remedy for removing the oscillation of pressure force
calculation requires further investigations.

8. CONCLUSIONS

A simple and stable ghost cell method is developed for the computation of incompressible flows
with arbitrary immersed bodies. The ghost cells are body cells neighboring at least one fluid cell,
whose values are to be determined such that the no-slip boundary condition is implicitly satisfied
on the body surface. The ghost cell values are obtained by a linear reconstruction of the flow field
in surface normal direction using the projection point and the image point of the ghost cell. The
image point is located at a fixed distance � away from the body surface, such that the resulting
linear reconstruction is simple and stable. An implicit pressure correction upwind finite volume
method is used to discretize the Navier–Stokes equations on locally refined Cartesian meshes.
Multigrid methods are developed to solve the discretized equations for both velocity and pressure
correction.

It is shown that the order of accuracy of the computed ⇀
vproj on body surface is about 1.8

for the lid-driven cavity flow considered. The method is second-order accurate in L2 and L∞
norms of velocity, and in the L2 norm of pressure. Various steady and unsteady flows over a 2D
cylinder and a 3D sphere are computed and compared with the published data to validate the
present method. The 2D flow over a moving cylinder is also computed to test the capability of
the present method to handle moving bodies. Because the distribution of ghost cells relative to the
body surface may vary as the body moves, the pressure force calculation exhibits oscillations in
the history of aerodynamic forces. For a linear body movement on a uniform grid, this oscillation
can be eliminated by a carefully chosen time step. For more complex body movement, however,
further studies are needed to find the remedy for the oscillation in the force history.
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